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Randomly colored space tesselations are considered as models for the mineral/ 
organic structure of bone. First, it is shown that the structure function for such 
models is always proportional to the average form factor of the individual 
tiles and hence independent of the mineral density in the sample. Then the 
structure function is calculated for three such models: for model I, based on a 
hexagonal, and model 2, on a Poisson-Voronoi tesselation of the plane and for 
model 3, based on a random tesselation of the line. These results are compared 
to experimental structure functions measured by small-angle scattering and 
excellent agreement is obtained between model 2 and the bone from mice and 
rats, as well as between model 3 and calcified turkey leg tendon. Divergent 
conclusions following recent experiments by small-angle x-ray scattering and by 
electron microscopy are discussed in the light of these structural models and an 
explanation is proposed which might remove the discrepancy. 

KEY WORDS: Bone; collagen; Voronoi tesselations; small-angle scattering; 
structure function; calcified tissue. 

1. I N T R O D U C T I O N  

T h e  s t r u c t u r e  o f  b o n e  as  a m i n e r a l / o r g a n i c  c o m p o u n d  is of  p r i m a r y  

i m p o r t a n c e  for  the  m e c h a n i c a l  p r o p e r t i e s  o f  the  ske le ton .  T h e  s t r u c t u r a l  

r e l a t i o n s h i p s  b e t w e e n  t he  c o m p o n e n t s ,  m o s t l y  h y d r o x y a p a t i t e  c rys ta l s  a n d  

co l l agen ,  1~-3~ are  still n o t  fully e l uc i da t ed ,  p r o b a b l y  b e c a u s e  t he i r  size is 

on ly  in the  o r d e r  of  n a n o m e t e r s .  F o r  th i s  r e a s o n  a la rge  r e sea rch  effort  is 

c u r r e n t l y  d e v o t e d  to  the  s t u d y  o f  b o n e  u s i n g  h i g h - r e s o l u t i o n  m e t h o d s ,  such  
as e l e c t r o n  m i c r o s c o p y  ( E M ) ,  14"-91 x - r ay ,  1~~ a n d  n e u t r o n  ~16" 177 s c a t t e r i n g  

a n d  o t h e r  t e chn iques .  ~s '  191 
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The collagen/mineral compound consists of fibrils of parallel molecules 
with mineral phase embedded inside. There is a general agreement that 
the mineral crystals are elongated particles, with their long dimension 
parallel to the molecules in the collagen fibril. Recently, a parallel arrange- 
ment of platelike crystals was revealed in calcified turkey leg tendon by 
three-dimensional reconstruction using high-voltage EM tomography/9) 
The situation is less clear for other types of bone, where either plate- 
shaped~6, 7, 47 or needle-shaped c2~ ~2.21) crystals were suggested from studies 
by electron microscopy and other more indirect techniques. In particular, 
a clear difference was recently observed in the small-angle x-ray scattering 
(SAXS) from calcified turkey leg tendon on one hand and from mouse or 
rat bone on the other. While the SAXS results for turkey tendon indeed 
agree with the existence of thin parallel mineral platelets, the results for 
mouse bone rather suggest a more irregular arrangement built up by 
(sometimes adjacent) needlelike objects, i.e., by crystal units where two 
dimensions are much smaller than the third. (~3) 

Although, unlike electron microscopy, SAXS does not provide direct 
images of the structure, it has the advantage that the material can be 
studied virtually without sample preparation, i.e., with the lowest possible 
danger of altering the original structure by the preparation process. 
Moreover, very accurate average values can be obtained by SAXS for a 
few parameters (or "invariants"~22-24)), such as the total volume and inter- 
face of the crystals. As the structure function measured by SAXS is just 
proportional to the squared absolute value of the Fourier transform of 
the electron density in the sample, EM and SAXS data should simply 
correspond by Fourier transformation. Unfortunately, the phase informa- 
tion is lost in the scattering process and for a direct comparison of EM 
with SAXS data one must rely on structural models to fit the SAXS results. 

An extensive study of the correspondence between EM pictures and 
SAXS spectra has been carried out in recent years for the morphology of 
two-phase structures formed by spinodal decomposition, (25-28) where 
precipitates of a given phase grow and coarsen within a different matrix 
phase. This is not unlike the case of mineralized collagen, which can be 
expected to form by the precipitation of mineral particles within the 
collagen matrix. Nevertheless, the structure functions measured for 
spinodal decomposition (29' 30.28) and for bone I z3. ]4) are completely different. 
In particular, the structure function for spinodal decomposition exhibits 
a maximum at finite wavevectors, which is absent for bone. A recently 
proposed model, ~3) based on rod-shaped mineral crystals distributed 
randomly within the collagen matrix, is able to explain at least this absence 
of the maximum. A model reproducing the SAXS spectra for bone quan- 
titatively is, however, still lacking. 
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In the following, the author calculates the structure function for 
several models, based on space tesselations, i.e., a complete subdivision of 
space into tiles, where it is supposed that some of the tiles correspond to 
mineral phase and others to organic substance (mainly collagen). The 
essential hypothesis, which will make the calculations tractable, is that the 
mineral phase is distributed randomly among the tiles. First, it is shown 
that for such models the total scattering is just proportional to the scatter- 
ing from an individual tile and is therefore independent of the mineral den- 
sity. Moreover, the structure function constructed using a two-dimensional 
Poisson-Voronoi tesselation is shown to reproduce exactly the SAXS cur- 
ves from bones of mice, rats, and dogs. A good representation for the 
SAXS from mineralized turkey leg tendon is, on the contrary, obtained 
with a structure of platelike mineral crystals based on a one-dimensional 
random tesselation. Typical pictures for the mineral distribution within 
these models are compared to EM results from the literature. 

2. D E S C R I P T I O N  OF T H E  M O D E L S  FOR M I N E R A L I Z E D  
C O L L A G E N  

As the mineral crystals are elongated objects parallel to the collagen 
molecules in the fibril, only a two-dimensional section across the fibril 
needs to be considered. Indeed, if a planar structure is supposed to be 
continued into the third dimension by simple translation of the plane, the 
three-dimensional (spherically averaged) structure function $3 is (28) 

S3(k) = k S2(k) ( 1 ) 

where $2 is the spherically averaged structure function in the plane. 

Model 1. The first model, already proposed in ref. 13, consists of a 
hexagonal lattice where the tiles are colored black in a random fashion. 
The black regions symbolize the mineral, whereas the white regions are 
occupied by collagen. The three-dimensional structure is obtained by trans- 
lating this planar structure along the direction perpendicular to the plane. 
Figure 1 shows a realization of this model. In Fig. la the hexagonal lattice 
is drawn and in Fig. lb 20% of the tiles are colored black, 40% in Fig. lc, 
and 60% in Fig. ld. Figure lb, for instance, could be a cross section 
through a collagen fibril with a mineral content of 20 %. Each black tile 
has to be imagined as a hexagonal rod oriented perpendicularly to the 
figure. Most crystals in Fig. la are therefore needlelike, but in the upper 
part of the figure an almost platelike object can be seen, which was formed 
by chance due to the random coloring of the tiles. This model is somewhat 
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Fig. I. (a) A hexagonal tesselation of the plane. The dots indicate the centers of the 
hexagons. (b-d) 20%, 40%, and 60% of the hexagons, respectively, were chosen at random 
and colored black. The rest were left white. 

unrealistic, because of the regular shape of the tiling. The collagen fibril 
itself is known to have only a liquidlike ordering within the plane shown 
in Fig. 1, (~5) so that  a strictly periodic ar rangement  of the crystals is also 
not to be expected. 

M o d e l  2. A more  irregular space tiling is achieved with the Poisson-  
Voronoi  tesselation. This is constructed by throwing points at r andom 
onto the plane (see the points in Fig. 2a). The polygonal  region that  lies 
nearer to a given point than to any other is assigned to that  point. This 
creates the tesselation shown in Fig. 2a. The polygons are then colored at 
random,  giving structures as in Fig. 2b (for 2 0 %  of mineral),  Fig. 2c 
(40%),  and Fig. 2d (60%).  Again each black tile corresponds to a cylinder 
with its axis perpendicular  to the paper. The structure of the mineral  phase 
is now very irregular, showing mostly needlelike objects at low densities 
(Fig. 2b), but platelike and even more  complicated patterns at higher 
densities (Figs. 2c and 2d). 

The two previous models  are based on a planar  tesselation into tiles 
of finite size. The typical e lementary object is therefore needlelike. These 
models are intended to describe the structure of  bone from rats and 
mice. ('4) To have a model  for a distribution of parallel plates as proposed,  
e.g., for the structure of calcified turkey leg tendon, t6"9' 14) one-dimensional  
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Fig. 2. (a) A Poisson-Voronoi tesselation of the plane. The dots indicate the Poisson points. 
(b-d)  20%, 40%, and 60% of the Voronoi polygons, respectively, were chosen at random 
and colored black. The rest were left white. 

tesselations of the line are also considered. In analogy to Eq. (l), the three- 
dimensional structure function follows from the one-dimensional one by 

2 ~  
S3(k ) = ~ s S , ( k )  (2) 

Model 3. Within the plane normal to the fibril direction, a line is 
chosen at random and this line is subdivided into intervals with length l 
according to the probability distribution p(l)dl .  The interval lengths are 
supposed independent. A two-dimensional picture similar to Figs. 1 and 2 
is obtained by drawing stripes perpendicularly to the intervals and by 
coloring the stripes at random. Figure 3 shows such a structure of parallel 
plates with a mineral density of 50% and where the probability distribu- 
tion of interval lengths has been chosen 

(n'~" 1 ~- ' 
p(l) d l= \ loJ In - 1 ) ~  e-'l/t~ (3) 

with n = 4 and l0 the average plate thickness. 
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Fig. 3. Succession of plates corresponding to a randomly colored linear tesselation with an 
interval length distribution according to Eq. (3) with n = 4. Fifty percent of the intervals were 
chosen at random and colored black. 

3. R A N D O M L Y  FILLED SPACE T E S S E L A T I O N S  

Consider a tesselation of  v-dimensional space into separate regions V, 
so that 

N N 

N 1 I . = 0 ,  WN = U V~ (4) 
n ~ l  n ~ l  

and l im~_  ~(WN) is covering the whole space. It is further supposed that 
each of  the tiles V,, may be either filled with mineral or with organic 
substance. A parameter  u,  is defined to be = 1 if there is mineral phase 
inside the tile V,, and = 0  otherwise. Moreover,  an average occupation of 
the tiles is defined by 

• N 
a =  lim Z u,, (5) 

N ~ oo  N n ffi 1 

and a volume fraction of mineral phase by 

1 N 

n = |  

the vertical bars denoting the volume of  the tile. The spherically averaged 
structure function Sv(k) for this model can be calculated by t28) 
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where the brackets denote spherical average and k = Ikl. With the notation 

f.(k)=f e ik'rd~r (8) 

and using the properties (4), the structure function becomes 

Sv(k)=lirno~Ii--~Nl(,," 
N )] 

( u , , - a ) ( u . , - a ) f . ( k ) f * , ( k )  (9) 

where the star denotes the complex conjugate. 
Now let us consider the {u,} as random variables that may be equal 

to either 0 or 1. The simplest such model is obtained when the mineral is 
supposed to be randomly distributed over the tiles. In this case u, and u,, 
are uncorrelated if mv~n and t~=~b [see Eqs. (5) and (6)]. Separating the 
sum in Eq. (9) into a term for n = m  and another for n ~ m ,  we find that 
the second term vanishes because u, and um are uncorrelated and the 
average of u,, is just ~ = ~b. Moreover, for all n. u,] = u. because u. can only 
be equal to 0 or 1) and 

(u . -  a): = u : . - a  ~ =~(1 -~)  (]o) 

With this simplification, Eq. (9) becomes 

Sv(k) = ~( 1 - c~) ~ ( k )  

where 

S~(k) lim [ I W ~ ( ~  ' ]  = If,,(k)l 2 
N ~ c r  n 1 

(ll) 

is the average structure function of a individual tile of the tesselation. The 
remarkable consequence is that, regardless of the density of mineral in the 
sample, the scattering will be proportional to the same function, which is 
the average scattering from the tiles in the tesselation. Consequently, if the 
individual tiles have a needlelike shape, the total scattering function will be 
that of a needlelike object, and if the individual tiles are plate-shaped, this 
will also be reflected directly in the total structure function. 

4. I N V A R I A N T S  OF THE S T R U C T U R E  F U N C T I O N  

There are a few general results about the structure function of a two- 
phase structure, mostly due to Guinier and Fournet (22) and Porod, (23) 
which are of importance for the present problem and are recalled here. 
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4.1. Porod's Law 

If there is a sharp interface between the two phases (mineral and 
organic) then the structure function S, should decay at large k according 
to Porod's law t23"221 

P~a (12) S~(k) ~k~+l 

where Pv is a constant and tr the total interface area per unit volume in 
v-dimensional space. With the definition (7) of S,., one has 

P3 = 2n, P2 = 2, Pl = 1 (13) 

Indeed, S3(k ) measured for bone by SAXS is usually found to follow 
Porod's law/~3, 14) 

The volume fraction ~ of the precipitates is related to the integral 
intensity by t28~ 

Io:kv-~S,(k)dk=n~(1 -~)Pv (14) 

This allows us to define an average correlation length of the two-phase 
structure by 123" 25.26. 28) 

T = 4 - -  ~ ( 1 - - ~ ) =  4 i~k,_~S,(k)dk (15) 
a n P , a  Jo 

The parameter T has a simple interpretation for a structure based on space 
tesselations as described in Section 3. Then, for v = 3, if the mineral phase 
is supposed to consist of individual crystals of size a ~< b ~< c, 

2abe 
T ~  (16) 

ab + bc + ca 

For needlelike crystals (a, b,~c),  this gives T.~(2ab)/(a+b), and in par- 
ticular for a = b ,~ c, T ~  a. For platelike crystals (a ,~ b, c) it gives T ~  2a. 
Consequently, T can be interpreted as a measure of the smallest dimension 
(i.e., the average thickness) of the mineral crystals in bone/~3" 14~ 

4.2. Guinier's Law 

Whereas the average thickness T can be determined without any 
model assumptions about the two-phase structure, another characteristic 
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length, the Guinier radius, 1221 can only be determined for very small ~b or 
within a model as described in Section 3. Considering a space tesselation 
into tiles of f inite size, we can develop the structure function Eq. (l l) to 
second order for small k as follows. 

For convenience, a function Z,,(r) is defined such that x,(r) = l if r is 
inside V,, and =0  otherwise. Introducing r,,, we define the center of mass 
of V,, as 

1 
r,, = i--~. i f rx,,(r) d~r (17) 

Equation (11 ) becomes 

N '.(k)--lira, {I--~NI <,,~, f [ l  
2>} 

+ i k . s - ~ ( k . s )  2+o(k2)] 

= lim Iv.12-1v,,I <(k.s)2>x,(r , ,+s)dVs + o ( k  2) 
N ~ or:, n I 

- v R ~ / +  o(k 2) ( 18 ) 

where Ag is an average volume of the tiles: 

1 N 
A ~ = l i m  ( ~ =  IV,,] 2) (19) 

and Rg an average radius of gyration of the tiles: 

. Rg = Nlimo~ {I-W~NI ,,~, [ IV,,I f s2x,,(r*, (20) 

In the case of a randomly colored tesselation, one therefore obtains a 
generalized Guinier law ~221 in the form 

Sv(k) 2 -k'-R"/v ~ A g e  ~ for small values o f k  (21) 

For a three-dimensional structure obtained by translating a planar 
tesselation (models 1 and 2), the Guinier law becomes [-using Eq. (1)] 

S3(k) ~ n__ 2 -k2R'a ~ k  Age ~ (22) 



134 Fratzl 

where Rg is the average radius of gyration of the planar tile. For a structure 
obtained from a linear tesselation [model 3, using Eq. (2)] 

where 2Rg 
Eq.(20). 

O - - .  

S~(k). Age  g (23) 

is the average thickness of the  intervals on the line according to 

5. CALCULATION OF THE S T R U C T U R E  F U N C T I O N S  

The results will be presented in terms of a scaled structure function 
F(q), where 

q = k T  and where 

With the use of Eq. (14), this means 

I :  4rcq2F(q) dq = 1 

F( q ) = S3( q/ T) /[  8rt3 T 3 ~( I - t b)] (24) 

5.1. Structure Function for Model  1 

As all the elementary tiles in the (planar) tesselation are identical 
hexagons, the function If,(k)l 2 defined by Eq. (8) will be independent of n 
and, say, equal to I f " (k ) l  2. Consequently, the crystal thickness T 
[Eq. (15)1 will be equal to T = 4  IVHI/ISHI, where IV"l and ISHI are the 
surface and the perimeter length of the hexagon (see Fig. 4). It results that 

T 

SURFACE = (v/3/2) T 2 

PERIMETER = 2 v~ T 

Fig. 4. Orientation of the hexagon for the calculation of F u. 
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T is just the distance between two parallel sides of the hexagon, as shown 
in Fig. 4. The radius of gyration as defined in Eq. (20) is related to T by 

2Rg V/5 = T T  (25) 

Combining Eqs. (1), (11), and (24), we find that the scaled structure 
function F n of the hexagon model (model 1) becomes 

1 f ~  f n ( q )  2 (qcosO'~ 
FH(q) -- 8re 3 x~ ~ q T4 dO where q = \q  sin OJ (26) 

Defining an x and a y direction as shown in Fig. 4, one gets 

fH(q/T ) = f eiq. r/T d2r 
vH 

with V H defined by (see Fig. 4) 

12xl ~< T, Ix + y `/~1 ~ T, 

A simple calculation shows that 

where 

k l = ~ s i n  0 - ~  , 

I x -  y x//3[ ~ T 

T2 k I cos k l + k2 cos k 2 - k  3 cos k3 (27) 
6klk2k3 

k2 =-~q~ sin (0 + 3) ,  
, / 3  k3 = ~33 sin O 

Inserting this into Eq. (26), one obtains an expression suitable for numeri- 
cal computation. Note that F n is a function of q only, independent of T. 

5.2. S t r u c t u r e  F u n c t i o n  for  M o d e l  2 

Model 2 is based on a Voronoi tesselation of the plane. Such tessela- 
tions have often been used as a model for natural phenomena in a variety 
of fields, such as astrophysics, geography, geology, materials science, cell 
biology, ecology, and others (for references, see ref. 31, p. 260). In par- 
ticular, Voronoi tesselations of three-dimensional space have been used to 
describe the morphology of two-phase systems, such as microemulsions (32) 
and catalysts. (33) In these works, the structure function was evaluated for 
the three-dimensional tesselation. Model 2 for bone is based on a two- 
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dimensional tesselation and the structure function will be evaluated here 
along the lines of the derivation for the three-dimensional case. (32) 

General  results about  Poisson-Voronoi  tesselations, (3t) allow us to 
calculate immediately the average crystal thickness T defined in (15). 
Calling c the density of the Poisson process, i.e., the number  of  points 
thrown at r andom per unit surface, we have that  the average perimeter 
of the typical Voronoi  polygon is 4 /x /~  and its average surface 1/c. (3') 
Consequently,  

1 
T = x / ~  (28) 

Using Eqs. (1), (11), and (24), we obtain the scaled structure function F v 
for model 2 

FV(q) = (1/8x2T2q) S V(q/T) (29) 

To  calculate the structure function SV(k) for the average tile in the two- 
dimensional Poisson-Voronoi  tesselation, we use the correlation function 
),(r), (32) which was introduced by Porod,  (z3) 

f: ,~V(k) = 2xr),(r) Jo(kr) dr (30) 

where 

where the function u(r)=--u, for r e  V,,. Due to the r andom coloring of the 
tiles, the integrand in this expression vanishes as soon as the two points s 
and r + s are not within the same Voronoi  polygon. Consequently,  (32) 

y(r) = c I exp[  - cS(r, s)]  d2s (32) 

where ,~(r, s) is the union of two circles with the centers at a distance r - - ] r [  
and with radii given by Isl and by Is + r[. This surface is ~(r, s) -- r2S(u, 0), 
where 

i sin 2~) (33) S(u, O) = u2(rc - 0 + �89 sin 20) + v2(~ - 

with 

IS I S �9 r 
/ / - -~  - - ,  COS 0 ---~ --- - - ,  

r s r  
v = (u 2 + 1 - -2u  cos O) '/2 

u cos 0 - 1 
COS 

V 



Statistical Model of Crystals in Collagen of Bone 137 

Inserting this into Eqs. (32), (30), and (29), we obtain 

FV(q) = 2 +  I~ u du ;:  dO I: '  x3J~176 dx 
q o 

I l l  ;~ 4S(u' O)-q2 2-.4s(u (/}] = 16nq u du dO -(-ff-(t~-O~ ~ e -q/t �9 (34) 

which depends on q only. This expression can be used for a numerical 
evaluation of F v. 

Finally, the average radius of gyration, Eq. (20), of the Poisson- 
Voronoi tiles can be determined by an expansion of F v in powers of q for 
small q. Indeed, a development to the second order yields 

FV'q " I 1 Pl Po e-q2pl/(2po ) 
47r q -8fr q ~ 4zrq 

(35) 

where 

;: f: pj= u du dO IS(//, 0)] --(j+2) 

and by comparison with Eq. (21) 

2Re=2 (P~ ~ 1.072T (36) 
�9 kPl /  

5.3. Structure Function for Model  3 

Starting with Eq. (11), one gets for the linear tesselation (model 3) 

1 ~ i d r  z g (k)=Tofl p(l) dl foe i*r 

Replacing p(I) by its value in Eq. (3) and carrying out the integral, we 
obtain 

~ L( k ) = -~a fo [ l _ C~ n arctan( lok /n ) ] ] 
[ 1 + (lok/n)2] "/2 (37) 

From Eq. (15) it follows that the parameter T is equal to 2l o. Together 
with Eq. (2) and (24) one obtains the scaled structure function for this 
model 

I cos [_n _arctan(q/2n) ] ] 1 1 -  (38) FI-(q)=rrZq4 [1 +(q/2n)2] ''/z J 

which is again independent of T. 

822/77/1-2-II 
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6. D ISCUSSION A N D  C O N C L U S I O N  

Statistical models of the habit and arrangement of mineral crystals in 
bone have been studied and the corresponding small-angle scattering 
patterns calculated. The results shall now be compared to the SAXS 
effectively measured for mouse bone ~13) and for mineralized turkey leg 
tendon, t14) 

In both cases, the diffuse small-angle scattering intensity was concen- 
trated in the equatorial plane normal to the fibril axis. t ~3, la) To account for 
this observation, the crystals (whether plate- or needlelike) were supposed 
parallel to the collagen molecules for all models considered here. Moreover, 
diffraction spots had been observed in the axial direction of the collagen for 
both tissues (mouse bone t131 and turkey tendon(~4~), which means that the 
crystals are in register with the 64-nm periodicity of collagen and hence 
located predominantly inside the gap zone of the collagen fibril/~6~ The pic- 
tures (Figs. 1-3) drawn for the mineral arrangement should therefore be 
regarded as highly magnified cross sections of one fibril perpendicular to 
the axial direction of the collagen and located inside the gap region. 

For a quantitative comparison, scaled structure functions F(q) have 
been obtained for three structural models, based on randomly filled space 
tesselations. Due to the rescaling [Eq. (24)] with the crystal thickness 
parameter [Eq. (15)] there is no free parameter in models 1 and 2, which 
correspond to structures formed by needlelike mineral crystals embedded 
into a collagen matrix (Figs. 1 and 2). There is just one parameter n in 
model 3, which describes parallel platelike mineral crystals in the collagen 
fibril, n is a measure for the width of the distribution of crystal thicknesses; 
the larger n, the narrower the distribution. In the limit when n--* oo, all 
crystals have exactly the same width. As the parameter T can be deter- 
mined directly also for experiment data [see Eq. (15) and refs. 13 and 14], 
a parameter-free comparison between the models and the measurements is 
possible. The precise meaning of the thickness parameter T within the three 
models is tabulated in Table I, confirming the qualitative interpretation of 
T given after Eq. (15). 

Table I. Parameters Characterizing the Mineral Crystals as a Function of 
Crystal Thickness T [Eq. (15)] 

Model 1 Model 2 Model 3 

Radius of gyration of the needle cross section 0.75(T/2) 
Average surface of the needle cross section 0.87T-" 
Average perimeter of the needle cross section 3.46T 
Average plate thickness 

I.o7(T/2) 
T 2 

4T 

- -  7"/2 
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101 

Fig. 5. Plot of F v (full line) as given by Eq. (29) compared to measured scaled structure 
functions for rat (full circles), mouse (triangles), and dog (open circles) femur (data from 
ref. 14). 

The comparison between the models and experiment data is carried 
out in Figs. 5-7. Figure 5 shows the data for the measured structure func- 
tion of bone from rats, mice, and dogs, taken from ref. 14, together with 
model 2 [Eq. (29)]. Although there is no free parameter in the model, the 
agreement is almost perfect. Figure 6 shows the data for mineralized turkey 

Fig. 6. 
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Plot of F L (full line) as given by Eq. (38) with n = 4 compared to the measured scaled 
structure function for calcified turkey leg tendon (data from ref. 14). 
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Fig. 7. Comparison of F v (full line) given by Eq. (29) to F H (broken line) given by Eq, (26). 
Note the oscillations of F H at large q = kT, due to the regular shape of the hexagonal tile. 

leg tendon (from ref. 14) together with model 3 (with n =4 ) .  Again the 
agreement is remarkably good. Models 1 and 2 are compared in Fig. 7. 
The curves are quite similar for small values of q, but model 1 has 
unrealistic oscillations at large q, due to the regularity of the hexagonal 
tesselation. It is clear that model 1 reproduces the essential features at 
small q, but would not fit the data in Fig. 5 at large q. 

Figures 5 and 6 show that model 2 gives an excellent account of 
the structure function from rat and mouse bone, and model 3 that of 
mineralized turkey tendon. Hence, Figs. 2 and 3, respectively, show an 
arrangement of mineral crystals in agreement with the SAXS data for these 
two types of mineralized tissue. All pictures correspond to a cross section 
of the fibril perpendicular to the axial direction of collagen, where the 
mineral phase is shown in black. Although contributions to the SAXS from 
mineral crystals located outside the collagen fibrils cannot be excluded, the 
fact that the crystals are in both cases mostly parallel to collagen molecules 
and appear with a 64-nm axial periodicity indicates that most of the 
scattering is due to mineral inside the fibril. Hence, Figs. 2 and 3 can be 
understood as cross sections through the gap zone of the mineralized 
collagen fibril in the case of rat bone and turkey tendon, respectively. 

In the case of mineralized turkey leg tendon (Fig. 3), the structure 
which best describes the SAXS data consists of parallel mineral plates. 
However, the distance between these plates cannot be constant throughout 
the sample, because this would lead to maximum in the equatorial scatter- 
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ing, which is not observed. ('4~ The present model calculations rather 
suggest a considerable variation of the distance between the plates. This 
indicates that the number of layers of collagen molecules between crystals 
must be variable, in contrast to earlier models/6) This might be linked to 
the fact directly observed, e.g., in fish bone, '8) that the mineralization 
proceeds at considerably different speed in adjacent fibrils, leading to 
fluctuations of the mineral density and hence of the distance between 
mineral crystals. 

In the case of mouse or rat bone, a modet built with parallel platelets 
is unable to reproduce the SAXS data. Perfect agreement is obtained, 
however, with a structure similar to the one shown in Fig. 2, built of 
individual, rather needlelike units. At low density (Fig. 2b), one can see 
individual needles of varying shapes; at higher densities (Fig. 2c) these 
needles agglomerate to more complicated structures, which can frequently 
have the character of interconnected plates. In fact, the main difference 
from model 3 is the interconnectivity of the crystals. Connectivity of 
the mineral is indeed essential to explaining the common observation that 
bone does not fall into pieces even after the removal of all the collagen. 
Moreover, the change from individual needles in Fig. 2b to a more com- 
plicated interconnected structure (which in many respects looks similar to 
interconnected plates with varying orientation) could well correspond to 
the fact that by means of electron microscopy individual needles are mainly 
observed in the early stages of mineralization, whereas they appear rather 
platelike in more strongly mineralized tissue/') 

Another interesting aspect is the absence of an interference maximum 
in the structure function, as usually observed for morphologies grown 
by spinodal decomposition ~25'26'2s-3~ or in x-ray scattering from macro- 
molecular solutions. The mathematical reason is the random distribution of 
the mineral on the tiles of a space tesselation (Section 3), the physical 
reason must be inherent in the nucleation process of the second phase. The 
reason for the appearence of the interference maximum in the case of 
spinodal decomposition is the conservation of matter during nucleation, 
growth, and coarsening, t2s~ This means that, due to diffusion limitations, 
material cannot be exchanged over large distances. Therefore, close to a 
precipitate there is a low probability of finding another one because all the 
material has already been used up by the first precipitate. Already Guinier 
and Fournet tn~ introduced the concept of "depletion zones" around 
precipitates to be responsible for the interference peak in the structure func- 
tion. No such depletion zone is expected during nucleation and growth of 
the calcium phosphate precipitates inside collagen. Indeed, the small 
calcium and phosphate ions are transported in aqueous solution, a process 
which is orders of magnitude faster than solid-state diffusion. This removes 
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effectively the conservation constraint and no correlations in the positions 
of the mineral precipitates in the equatorial plane (i.e., the cross section 
through the gap zone of the fibril) and therefore no maximum in the struc- 
ture function are induced within the equatorial plane. 

In conclusion, the structure function has been calculated for models 
based on randomly colored space tesselations, and excellent agreement is 
obtained with SAXS data for different mineralized tissues. The resulting 
pictures for the mineral structure show parallel plates for turkey leg tendon. 
For the bones of mice and rats perfect agreement with SAXS data is 
obtained by a structure built by needlelike units. With increasing mineral 
density, the individual needles merge into plates of various orientations to 
give a mineral structure with high interconnectivity. Although this structure 
still needs to be confirmed by EM tomography, such as used in the case of 
turkey leg tendon, (9) the present model may explain some of the diverging 
observations about crystal shapes in bone tissue using electron microscopy 
and x-ray scattering techniques.(]2" 14) 
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